Another bijection between 2-triangulations and pairs of non-crossing Dyck paths

نویسنده

  • Carlos M. Nicolás
چکیده

A k-triangulation of the n-gon is a maximal set of diagonals of the n-gon containing no subset of k + 1 mutually crossing diagonals. The number of k-triangulations of the n-gon, determined by Jakob Jonsson, is equal to a k×k Hankel determinant of Catalan numbers. This determinant is also equal to the number of k non-crossing Dyck paths of semi-length n− 2k. This brings up the problem of finding a combinatorial bijection between these two sets. In FPSAC 2007, Elizalde presented such a bijection for the case k = 2. We construct another bijection for this case that is stronger and simpler that Elizalde’s. The bijection preserves two sets of parameters, degrees and generalized returns. As a corollary, we generalize Jonsson’s formula for k = 2 by counting the number of 2-triangulations of the n-gon with a given degree at a fixed vertex. Résumé. Une k-triangulation du n-gon est un ensemble maximal de diagonales du n-gon ne contenant pas de sousensemble de k + 1 diagonales mutuellement croisant. Le nombre de k-triangulations du n-gon, déterminé par Jakob Jonsson, est égal à un déterminant de Hankel k × k de nombres de Catalan. Ce déterminant est aussi égal au nombre de k chemins de Dyck de largo n− 2k que ne pas se croiser. Cela porte le problème de trouver une bijection de type combinatoire entre ces deux ensembles. À la FPSAC 2007, Elizalde a présenté une telle bijection pour le cas k = 2. Nous construisons une autre bijection pour ce cas qui est plus forte et plus simple que de l’Elizalde. La bijection conserve deux ensembles de paramètres, les degré et les retours généralisée. De ce, nous généralisons la formule de Jonsson pour k = 2 en comptant le nombre de 2-triangulations du n-gon avec un degré à un vertex fixe.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A bijection between 2-triangulations and pairs of non-crossing Dyck paths

A k-triangulation of a convex polygon is a maximal set of diagonals so that no k + 1 of them mutually cross in their interiors. We present a bijection between 2-triangulations of a convex n-gon and pairs of non-crossing Dyck paths of length 2(n−4). This gives a bijective proof of a recent result of Jonsson for the case k = 2. We obtain the bijection by constructing isomorphic generating trees f...

متن کامل

Enumeration of 1- and 2-crossing Partitions with Refinements

An enumeration of the 1-crossing partitions of [n] into k blocks by bijection with ordered trees with n edges, k internal nodes, and root degree j = 4 is presented. A semi-bijection of these ordered trees to Dyck paths of semilength n, k peaks, and j = 4 last peak height is used to derive a conjectured formula for the number of 1-crossing partitions of [n] with k blocks. We also explore some na...

متن کامل

Maximal Fillings of Moon Polyominoes, Simplicial Complexes, and Schubert Polynomials

We exhibit a canonical connection between maximal (0, 1)-fillings of a moon polyomino avoiding north-east chains of a given length and reduced pipe dreams of a certain permutation. Following this approach we show that the simplicial complex of such maximal fillings is a vertex-decomposable, and thus shellable, sphere. In particular, this implies a positivity result for Schubert polynomials. Mor...

متن کامل

Pairs of noncrossing free Dyck paths and noncrossing partitions

Using the bijection between partitions and vacillating tableaux, we establish a correspondence between pairs of noncrossing free Dyck paths of length 2n and noncrossing partitions of [2n + 1] with n + 1 blocks. In terms of the number of up steps at odd positions, we find a characterization of Dyck paths constructed from pairs of noncrossing free Dyck paths by using the Labelle merging algorithm.

متن کامل

Bijective counting of plane bipolar orientations and Schnyder woods

A bijection Φ is presented between plane bipolar orientations with prescribed numbers of vertices and faces, and non-intersecting triples of upright lattice paths with prescribed extremities. This yields a combinatorial proof of the following formula due to R. Baxter for the number Θij of plane bipolar orientations with i non-polar vertices and j inner faces: Θij = 2 (i+ j)! (i+ j + 1)! (i + j ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009